Time course changes in signaling pathways and protein synthesis in C2C12 myotubes following AMPK activation by AICAR.
نویسندگان
چکیده
The role of the AMP-activated kinase (AMPK) as a metabolic sensor in skeletal muscle has been far better characterized for glucose and fat metabolism than for protein metabolism. Therefore, the studies presented here were designed to examine the effects of 5-aminoimidazole-4-carboxamide-1-beta-d-ribonucleoside (AICAR)-induced AMPK signaling on effector mechanisms of mRNA translation and protein synthesis in cultures of C(2)C(12) myotubes. The findings show that, following AICAR (2 mM) treatment, AMPK phosphorylation was increased within 15 min and remained elevated throughout a 60-min time course. In association with the increase in AMPK phosphorylation, global rates of protein synthesis declined to 90, 70, and 63% of the control values at the 15-, 30-, and 60-min time points, respectively. By 60 min, polysomes disaggregated into free ribosomal subunits, suggesting an inhibition of initiation of mRNA translation. However, phosphorylation of eukaryotic elongation factor 2 was increased at 15 and 30 min but then declined to control values by 60 min, suggesting a transient inhibition of translation elongation. The decline in protein synthesis and changes in mRNA translation were associated with a repression of the mammalian target of rapamycin (mTOR) signaling pathway, as indicated by increased association of Hamartin with Tuberin, increased association of regulatory associated protein of mTOR with mTOR, and dephosphorylation of the downstream targets ribosomal protein S6 kinase-1 and eukaryotic initiation factor 4E-binding protein-1. They were also associated with activation of the MAPK signaling pathway, as indicated by increased phosphorylation of MEK1/2 and ERK1/2 and the downstream target eIF4E. Overall, the data support the conclusion that AICAR-induced AMPK activation suppresses protein synthesis through concurrent repression of mTOR signaling and activation of MAPK signaling, the combination of which modulates transient changes in the initiation and elongation phases of mRNA translation.
منابع مشابه
AICAR-induced activation of AMPK negatively regulates myotube hypertrophy through the HSP72-mediated pathway in C2C12 skeletal muscle cells.
5'-AMP-activated protein kinase (AMPK) plays an important role as a negative regulator of skeletal muscle mass. However, the precise mechanism of AMPK-mediated regulation of muscle mass is not fully clarified. Heat shock proteins (HSPs), stress-induced molecular chaperones, are related with skeletal muscle adaptation, but the association between AMPK and HSPs in skeletal muscle hypertrophy is u...
متن کاملبررسی اثر کورکومین بر میزان فسفریلاسیون AMPK وACC در سلولهای ماهیچهای رده C2C12
Introduction: AMP activated protein kinase (AMPK) as key regulators of cell metabolism, plays a major role in the activation of catabolic pathways, such as glucose transport and fatty acid oxidation. Thus, activation of this pathway can be used in the treatment of diabetes and metabolic syndrome. Many studied proposed the effectiveness of the polyphenols present in rhizomes of turmeric (curcumi...
متن کاملRole of AMPK and PPARγ1 in exercise-induced lipoprotein lipase in skeletal muscle.
Exercise can effectively ameliorate type 2 diabetes and insulin resistance. Here we show that the mRNA levels of one of peroxisome proliferator-activated receptor (PPAR) family members, PPARγ1, and genes related to energy metabolism, including PPARγ coactivator-1 protein-1α (PGC-1α) and lipoprotein lipase (LPL), increased in the gastrocnemius muscle of habitual exercise-trained mice. When mice ...
متن کاملاثر ضددیابتی عصاره زردچوبه از مسیر سلولی غیروابسته به انسولین AMPK
Introduction: Blood glucose is high in diabetic patients. It is taken from blood by two separate pathways: Insulin-dependent pathway of phosphoinositide 3 kinase (PI3K) and insulin-independent pathway AMPK (AMP-Activated protein kinase). The first pathway is impaired in type 2 diabetic patients, but the second pathway is active. On the other hand, curcuma longa extract containing a high percent...
متن کاملAICAR and hyperosmotic stress increase insulin-stimulated glucose transport.
Sensitivity of glucose transport to stimulation by insulin has been shown to occur concomitant with activation of the AMP-activated protein kinase (AMPK) in skeletal muscle, suggesting a role of AMPK in regulation of insulin action. The purpose of the present study was to evaluate a possible role of AMPK in potentiation of insulin action in muscle cells. The experimental model involved insulin-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 291 1 شماره
صفحات -
تاریخ انتشار 2006